Multi-domain learning and generalization in dialog state tracking
نویسنده
چکیده
Statistical approaches to dialog state tracking synthesize information across multiple turns in the dialog, overcoming some speech recognition errors. When training a dialog state tracker, there is typically only a small corpus of well-matched dialog data available. However, often there is a large corpus of mis-matched but related data – perhaps pertaining to different semantic concepts, or from a different dialog system. It would be desirable to use this related dialog data to supplement the small corpus of well-matched dialog data. This paper addresses this task as multi-domain learning, presenting 3 methods which synthesize data from different slots and different dialog systems. Since deploying a new dialog state tracker often changes the resulting dialogs in ways that are difficult to predict, we study how well each method generalizes to unseen distributions of dialog data. Our main result is the finding that a simple method for multi-domain learning substantially improves performance in highly mis-matched conditions.
منابع مشابه
Multi-domain Dialog State Tracking using Recurrent Neural Networks
Dialog state tracking is a key component of many modern dialog systems, most of which are designed with a single, welldefined domain in mind. This paper shows that dialog data drawn from different dialog domains can be used to train a general belief tracking model which can operate across all of these domains, exhibiting superior performance to each of the domainspecific models. We propose a tr...
متن کاملRecipe For Building Robust Spoken Dialog State Trackers: Dialog State Tracking Challenge System Description
For robust spoken conversational interaction, many dialog state tracking algorithms have been developed. Few studies, however, have reported the strengths and weaknesses of each method. The Dialog State Tracking Challenge (DSTC) is designed to address this issue by comparing various methods on the same domain. In this paper, we present a set of techniques that build a robust dialog state tracke...
متن کاملUtilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملThe Second Dialog State Tracking Challenge
A spoken dialog system, while communicating with a user, must keep track of what the user wants from the system at each step. This process, termed dialog state tracking, is essential for a successful dialog system as it directly informs the system’s actions. The first Dialog State Tracking Challenge allowed for evaluation of different dialog state tracking techniques, providing common testbeds ...
متن کاملMachine Learning for Dialog State Tracking: a Review
Spoken dialog systems help users achieve a task using natural language. Noisy speech recognition and ambiguity in natural language motivate statistical approaches that model distributions over the user’s goal at every step in the dialog. The task of tracking these distributions, termed Dialog State Tracking, is therefore an essential component of any spoken dialog system. In recent years, the D...
متن کامل